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Abstract—Human-robot collaboration systems benefit from the
ability of the robot to recognize people’s intentions. People’s
nonverbal behavior while performing tasks, especially gaze, has
shown to be a reliable signal to recognize what people intend to
do. We propose an additional usage of this signal: to recognize
when something unexpected has occurred during the task. Case
studies from a dataset of gaze behavior when controlling a robot
indicate that people’s gaze deviates from ordinary patterns when
unexpected conditions occur. By using such a system, robot
collaborators can identify unexpected behaviors and smoothly
take corrective action.

I. INTRODUCTION

Robots can increase people’s abilities to accomplish their
goals in applications varying widely from assistive robotics, to
collaborative assembly, to home robots. These systems have
been particularly successful at performing specific, isolated
activities such as factory assembly. However, enabling robots
to smoothly collaborate in real time with human partners
remains a significant challenge. Existing systems have found
success by focusing on specific interactions and limited models
of human behavior, but this approach is difficult to generalize
to real-world conditions.

Instead of idealized approaches that assume that people
conform to predefined behavior patterns, we can instead ex-
plicitly look for times when these assumptions are violated. We
propose the idea of anomaly detection for human mental state
monitoring. Rather than trying to collect data on all possible
human states and match observations to the data, systems
can build models of normative behavior and note deviations
from it, even if that particular deviation has not been seen
in advance. This general technique, coupled with conservative
recovery behaviors that enable success even in the presence
of uncertainty, can enhance the robustness of existing human-
robot collaboration systems.

To make this idea concrete, consider a sample task: A user
controls a robot using a joystick to spear a piece of food
on a plate (see Fig. 1). Since the joystick allows only two
dimensions of input, the user controls the robot using a mode
switching behavior: the joystick axes moves the end-effector
in x/y, z/yaw, or pitch/roll, as the user cycles between modes
using a button on the joystick. This control configuration is
difficult, especially for novice users[7].

Fig. 1: In this assistive manipulation task, a participant controls
the robot manipulator to spear a marshmallow, using the
joystick to provide input. A Pupil Labs Pupil eye tracker [13]
captures the participant’s gaze information.

One existing approach to providing robot assistance for this
task is to detect the user’s goal and blend the user’s input
signal with those suggested by a motion planner [7]. These
systems provide a significant improvement in both task success
metrics and user satisfaction. However, that category of ap-
proach requires significant task knowledge (i.e., enumerating
all possible interaction points). An alternative approach is to
build models of human mental state while performing this
task and look for any deviations from that model. With this
strategy, the system is able to explicitly handle configurations
that it did not anticipate, so the resulting assistance is not as
limited by the a priori task specification.

One powerful strategy for learning people’s mental state
collaboration is to monitor their nonverbal behavior, especially
gaze behavior. People’s gaze follows consistent patterns when
they are performing specific tasks like walking [11], manip-
ulating objects [8] [10], or controlling robots [1]. Moreover,
these observations has been used to build collaborative systems
that monitor gaze behavior to determine people’s intentions



Fig. 2: In ordinary operation, people look only at the robot
end-effector tool tip (left) or the spearing target (right).

during serving [6] or handover [4]. Gaze behavior is a rich
signal for understanding people’s mental states, and its use
has only begun to be explored.

We propose an additional way of using gaze: to recognize
anomalous behavior in the human partner. Since gaze behavior
is so task-driven, and since people rarely look at objects
not relevant to the current task [5], a gaze anomaly can
signal that something unexpected has occurred. Comparing
the observed gaze against models of expected behavior can
provide feedback to improve the robustness of collaborative
robot systems. Regarding our sample task, we have previously
noted [1] that gaze behavior follows reliable patterns during
robot teleoperation and shared manipulation (Fig. 2). Here, we
discuss consistent gaze behaviors that occur during teleoper-
ation failures. We propose to build an error detection system
for this task using gaze deviation as an error signal.

In this work, we present an overview of how such a system
might be constructed. Using a gaze dataset we collected, we
present some case studies illustrating these anomalies. We
discuss methods for automatically detecting such anomalies
and consider the role such a system can play within the broader
context of human-robot collaboration.

A. Data

To understand people’s gaze behavior when operating a
robot in an assistive manipulation task, we collected a dataset
of that behavior. We brought in 24 able-bodied participants to
use a robot manipulator in a food spearing task as described
above (Fig. 1). The robot was operated in four different
assistive conditions, from fully teleoperated to an autonomous
condition using the joystick only for goal selection, and two
intermediate assistance levels. While the participants operated
the robot, a number of signals were captured, including gaze

focal point and participant video. This dataset, which we will
publish [12], enables us to discuss and quantitatively model
gaze behavior during this particular task.

II. GAZE FOR ANOMALY DETECTION

We propose to monitor human gaze patterns while perform-
ing a task to recognize anomalous behavior. Gaze is a good
signal to use to identify anomalies for several reasons. First,
gaze is highly responsive to the situation; people can move
their eyes to observe new data much faster than they move
their hands. Second, since gaze behavior is ordinarily relevant
to the task being performed, unexpected gaze behavior is likely
to be meaningful, rather than being entirely noise. Finally, even
without prior identification of possible failures, anomalous
gaze behavior provides a loose cue as to the identity of the
anomaly, based on the location. Therefore, such a system is a
promising target for investigation.

To build such a system, we first need a collection of
examples of normative behavior. For example, a simple model
would involve identifying task-relevant objects (the robot end-
effector and the target object in our sample task) and noting
when the participant fixates on other objects in the scene.
For more sophisticated classifiers, learning techniques can be
used; a variety of machine learning methods have proved
successful when classifying gaze behavior for prediction,
including SVMs [6], HMMs [2], scanpath linguistic matches
[9], and template matching [3]. Rather than performing future
prediction, however, this system can be applied to current
actions by determining how well they fit the expected model.
If the match is below a threshold, the system determines that
an anomalous condition has occurred and initiates recovery
behavior.

Understanding what nominal behavior during a task looks
like requires examples. One approach is to collected task-
specific data and label anomalies by hand. Alternatively, it
may be possible to use a natural dataset with fewer anomalies
for training, such as the assistance condition in our running
example: with robot assistance, gaze behavior may be the same
(when conditioned on robot position), but the process is more
robust so anomalies occur less often. In addition, it may be
possible to take a pure unsupervised learning approach and
determine nominal behavior either from the most common
patterns or by using heuristics like assuming that short trials
are successful and longer trials are more likely to contain
failures. Full quantitative investigation is a topic for further
research, but the case studies outlined in Section III suggest
that it will be successful.

After an anomaly is detected, a recovery strategy can be
attempted based on a separate reasoning system. For example,
if the system sees that the participant is looking at a joint
of the robot, and from the kinematic infrastructure infers that
that joint is in a problematic configuration, the system can
briefly remove control from the user, reorient the robot into a
different configuration, and return control. Similarly, if there
is an unknown anomaly like an obstacle that the system is not
aware of, the system can cease assistive behavior and enable



Fig. 3: When the robot occludes the robot end-effector, the user must move their head to get a better view. This behavior can
be detected from the egocentric video data, shown here in a three-frame sequence.

full manual control. We deliberately separate the anomaly
cuing behavior from the recovery behavior, as any number
of different recoveries may be possible.

One could ask: why anomaly detection when we could
simply make the robot better (either through assistance or
controls or operator education) such that problematic behavior
does not happen? In response, we argue that anomalous
conditions are, by definition, impossible to expect. While we
lay out particular examples below, we expect that in general, it
is intractable to identify all possible anomalies in advance and
collect enough data to design classifiers and recovery strategies
for each one. (This “long tail” problem, in which the number
of anomalous events to plan for rises exponentially with
reliability requirements, occurs throughout robotics.) Instead,
we can design systems that compare observed behavior against
nominal behavior, and thus we take advantage of where the
bulk of the data lies. While this system can’t necessarily ex-
actly identify the type of failure, for that we can take advantage
of the human’s ability to react and solve the problem. The
robot can simply help when it does know the failure type, and
get out of the way when it does not.

Anomaly detection is not a replacement for other types
of intent prediction, or even other uses of gaze. On the
contrary, by supplementing other uses of gaze with an anomaly
detection strategy, we can enable systems to be more robust
to errors that were not anticipated by the rest of the system.
If gaze is already a signal used by the rest of the system, it
is relatively easy to layer in an anomaly detection capability
and make the system as a whole more robust to failure.

III. CASE STUDIES

To understand the kinds of anomalous behavior that can
occur and how gaze behaviors indicate their presence, we
examine two case studies that appeared throughout our human-
robot comanipulation dataset.

One common behavior that recurred happened when the
robot occluded the goal. In this case, participants moved their
heads to the left or right to try to get a better view. The
egocentric video during such scenes (see Fig. 3) has some
clear features that can identify this behavior. For example, a
simple optical flow–based system for measuring head motion
can show that something has happened. This head motion does
not occur when the robot was not occluded; in fact, head
motion was remarkably steady otherwise. Thus, monitoring
gaze origin (i.e., head position) can detect one type of anomaly.

Fig. 4: The participant’s gaze location, as indicated by the red
circle, covers the robot joint as they maneuver through a bad
kinematic configuration.

A second behavior that happens is that the participant puts
the robot into a poor kinematic configuration. For example,
Fig. 4 shows egocentric video from when the robot has been
placed such that the participant would like to drive it down-
ward towards the plate, but the robot elbow gets in the way. In
this case, the participant looks at the joint that is near collision,
while in normal operation the participant almost never looks at
anywhere on the robot other than its end-effector. Therefore,
from this anomalous gaze behavior, a system can learn not
only that the robot is in a poor kinematic configuration, but
exactly which joint to fix. In this case, the robot could pause
user control, perform an internal reorientation step to place
the robot in the same end-effector position but in a different
joint configuration, and return control to the user.

These two examples occurred at least five times each
throughout the sample dataset and demonstrate the utility
of a system to resolve this behavior. However, a number
of other surprising conditions also occurred throughout the
dataset, some appearing only a single time. Therefore, though
we identify two particular cases where a general anomaly
detection system would be useful, we posit that its generality
is essential for its success.

IV. BENCHMARKING

We can speculate about similar case studies that might arise
during the benchmarking example of stacking blocks. For
example, say that our automated system was monitoring its
human partner’s gaze to predict (1) what action the partner was
taking (scanning for blocks, reaching to grasp a block, waiting
for the robot) and (2) which block the partner was reaching



for next. This system could potentially be made robust with
sufficient training and engineering. However, what happens
if, say, the human partner is interrupted by a friend in the
hallway and is no longer on task? Our pretrained gaze-based
intent predictor may not be able to detect this condition, but
an anomaly detector can at least determine that we are in an
unexpected situation. Then, the robot can engage in a type
of recovery action, such as discontinuing operation until the
person returns to a ready position.

A second behavior that might occur during the scenario is
that the human participant is unable to find the next block; the
block may have fallen off the table or be occluded by the robot
arm. In this case, we would expect people to start looking
around for the block and initiate visual scanning behavior.
This gaze pattern is clearly distinguishable from gaze behavior
during manipulation. If the gaze monitoring system determines
that this behavior is occurring, it can induce the robot to at
the least be more patient and wait for the human partner to
complete its search task. Alternatively, if the robot knows
where the next block is, it might reconfigure itself to remove
any occlusion or highlight to its partner where the block is.
While a different, customized recovery strategy is required
when identifying individual failure cases, building a general
system enables appropriate fallback behavior in any of these
examples. An anomaly detection system supplements existing
attention recognition behavior to make the system more robust.

V. CONCLUSION

In this work, we present the idea of using gaze models
to detect anomalous behavior in a human-robot collaborative
task. Gaze behavior is a reliable signal of human intent when
performing a task, it follows several consistent patterns, and it
has been used successfully to infer people’s goals. In addition,
deviations from expected gaze behavior can be used to detect
unexpected conditions during the task operation. Then, the
robot can initiate some sort of recovery strategy, based on
what it can gather about the type of anomaly. Adding this
kind of detection system can make human-robot collaborative
tasks more robust to unexpected behavior.

To demonstrate the viability of this technique, we present
two case studies of such anomalous behavior in a dataset
we collected of robot teleoperation with gaze monitoring.
Within this data, we identify two distinct cases of anomalous
conditions associated with specific gaze behavior. First, when
the robot end-effector is occluded by the robot, people move
their heads to get a better view. Second, people look at the
internal joints of the robot only when there is a kinematic
failure in the robot configuration, and when looking at the
robot otherwise, only focus on the end-effector. In each of
these cases, a problematic condition in the task is clearly
revealed in the operator’s gaze behavior.

Future work will include applying machine learning tech-
niques to automatically detect anomalous behavior and ap-
propriate recovery strategies. Then, a complete system, with
gaze-based failure detection and recovery, will be tested with
human users to determine its effectiveness and usefulness.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion (IIS-1755823) and the Paralyzed Veterans of America.

REFERENCES

[1] R.M. Aronson, T. Santini, T.C. Kübler, E. Kasneci,
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