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Abstract

Full robot autonomy is the traditional goal of robotics research. To
work in a human-inhabited world, however, robots will often need to collab-
orate with humans. For example, many scenarios require human users to
teleoperate robots to perform tasks, a paradigm that appears everywhere
from space exploration, to disaster recovery, to assistive robotics. This
collaboration enables tasks to be performed more smoothly or safely than
humans could without requiring full robot autonomy. However, robots are
hard to control. To compensate, roboticists build shared control systems,
in which the robot operator’s command is combined with an autonomous
plan to accomplish the operator’s goal.

We propose to enhance shared control systems by observing people’s
natural, nonverbal behavior and using that signal to gain additional
insight into their goals and concerns about the task. In particular, how
people look at a scene depends on what they are thinking about the scene.
Research into eye gaze behavior shows that when manipulating objects
by hand, people look at their next goal or next obstacle as they become
relevant and rarely at task-irrelevant places. By tracking and processing a
user’s eye gaze behavior, shared control systems can build more complex
models of the user’s intentions. Equipped with this knowledge, shared
control systems can both provide more accurate assistance and new types
of assistance.

In this thesis, we begin by conducting a study examining how people’s
eye gaze behavior relates to the task performance while they teleoperate
a robot manipulator. Next, we develop a pipeline for processing the raw
eye gaze sensor signal to include task context and develop models to learn
aspects of user mental state from this gaze signal. Finally, we design
and evaluate two gaze-based assistance systems: goal recognition, which
we compare with input-based goal recognition strategies; and dynamic
concern-based collision avoidance, a new approach in shared control.
This thesis establishes the usefulness of the eye gaze signal for enabling
more sophisticated shared control behaviors. Moreover, it shows how
monitoring people’s natural behaviors can be incorporated into human-
robot collaboration for more sophisticated mental state modeling and
corresponding behavior.
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Chapter 1

Introduction

1.1 Monitoring Natural Eye Gaze Improves Tele-

operation

The promise of fully autonomous robots capable of performing complex tasks based

only on high-level instructions persists as a valuable goal for robotics research. How-

ever, robots are capable of providing significant benefits even without full automation:

through teleoperation, robots can perform tasks controlled by a human operator.

This control strategy sidesteps the distant goal of full autonomy and instead develops

a system that works, in which robots can perform simple tasks and a user provides

the complex sensing and planning systems required. Indeed, teleoperated systems are

used widely in deployed robots today, for such tasks as space exploration, disaster

recovery, or assisted manipulation. Moreover, even if we can achieve full autonomy,

teleoperation nevertheless remains a valuable control design strategy applicable to

many scenarios. For example, high-risk activities (such as surgery or space operation)

may be too dangerous to leave to fully autonomous systems, or personal activities

(such as bathing) may be more comfortably performed without the perception of a

separate autonomous agent.

However, teleoperated systems are difficult to control. Specifically, accomplishing

manipulation tasks through teleoperation typically requires simultaneously controlling

several degrees of freedom while adapting to (possibly dynamic) contact with the

environment. Depending on the domain, this problem is made further complicated by
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1. Introduction

issues such as controller latency, nonintuitive controller-to-end-effector mappings, and

the limitations of visual feedback due to occlusion and the inability to perceive forces.

The range of proposed solutions is similarly various, including novel interface design

(such as whole-arm monitoring or force-feedback joysticks) and controller design (to

ensure stability under latency). For applications such as assistive robotics, however,

these interfaces cannot be used due the physical capabilities of the intended users.

Therefore, alternative approaches are required.

One approach that has developed recently to ease teleoperation is shared control.

In these systems, a robot arm is controlled simultaneously by a user (via joystick or

other input device) and an autonomous planning system. The planner recognizes

the operator’s goal and plans a trajectory for the robot to take. Then, the controller

and planned trajectories are combined to accomplish the task. This approach does

not rely on sophisticated physical interfaces and is therefore especially promising

for assistive manipulators. Indeed, it has shown some promise in that domain by

considering only the user’s controller inputs for goal recognition [4, 5].

We can do even better. People continuously emit natural, nonverbal signals tele-

graphing their intentions, concerns, and mental state in general. Without increasing

the control difficulty, shared control systems can derive a much richer understanding

of their controller’s view of the task by monitoring these signals. This rich model of

the user’s mental state while performing a task enables more sophisticated shared

control behavior.

To achieve this more sophisticated user model, we turn to a new sensing paradigm:

eye gaze detection. Psychological research in eye gaze behavior indicates that eye

gaze is strongly connected to task progression during manipulation [6, 7, 8, 9]. People

look at the objects they are reaching for and at the obstacles they are avoiding.

People also look at tasks differently depending on their expertise in accomplishing

the task [10], their facility with the signal input system [11], their cognitive load [12],

etc. In addition, people produce this signal naturally and unconsciously. Unlike

gaze-based input systems, using eye gaze in this way does not disturb the user’s

ability to interact with the task as they normally would, and it requires no additional

training. By detecting people’s eye gaze behavior while they are teleoperating a

robotic manipulator, we can build a much more complex model of their approach to

the task and provide correspondingly complex assistance behavior.

2



1. Introduction

1.2 Application to Assistive Systems

To make the problem specific, we focus on a particular application for teleoperated

manipulators: wheelchair-mounted assistive robots for people with upper mobility

disabilities. For decades, assistive robot manipulators have been an area of exciting

research [13, 14], and using these robots allows people to accomplish a wide variety of

tasks [15, 16, 17]. Making these arms more usable directly contributes to improving

the quality of life for people with certain disabilities.

Assistive systems are particularly appropriate for shared control approaches. This

domain shares many of the same challenges of other teleoperation tasks in requiring

complex motion and contact with the environment. The usual control input in this

domain, in which users control two dimensions of end-effector motion at a time using

a joystick, only compounds these challenges [18]. However, approaches that work well

for other task domains do not necessarily transfer well for assistive robotics. Since

people use assistive robot arms to accomplish a wide variety of activities of daily

living, relying on specific assumptions about desired robot behavior or task domain

does not extend well. In addition, novel control interfaces such as whole-arm sensors

are often unusable by people with disabilities. Therefore, a shared control approach

is particularly appealing for this domain. Indeed, this strategy has already shown

success. One implementation [4] enabled non-disabled users to complete their tasks

faster and more efficiently, and another study with users with disabilities [5] showed

that users do prefer to work with some amount of this type of assistance.

Improving on shared control by incorporating eye gaze inputs is especially im-

portant for the assistive domain. Since people who use assistive robot arms use

them frequently to perform many different tasks, even minor increases in efficiency

compound to become larger quality-of-life increases. Providing natural eye gaze

requires no special actions by the user, since people already produce these signals

automatically. In addition, eye gaze grants access to the user’s perception of the

task, which can enable complex forms of assistance without requiring a fully general

solution for robotic manipulation.

3



1. Introduction

1.3 Contributions

In this thesis, we demonstrate how by monitoring the natural eye gaze behavior of

people performing a manipulation task with a robot, we can achieve more sophisticated

techniques for shared control. To begin, we conducted a study of eye gaze behavior

during teleoperated manipulation and compared these behaviors with those shown

during by-hand manipulation. We found that people indeed look at their manipulation

targets and obstacles that are causing them problems, though they look much more

at the robot end-effector then at their hands. People’s glances at their goal objects

are correlated with which part of the task they are performing, and their glances

towards unlikely objects like internal robot joints correspond to times when those

joints cause task failure. In addition, we collected a dataset of eye gaze and user

behavior during this teleoperation task. Finally, we propose to repeat the eye gaze

study with people with disabilities to understand how their gaze behavior aligns with

that of non-disable users. These observations and this dataset enable the development

of assistive algorithms.

Next, we develop a pipeline to process the raw eye gaze signal to incorporate

contextual information about the task. Eye gaze trackers typically provide a pixel

location on an egocentric video scene as their output. While many eye gaze analysis

strategies work on this signal directly, activity recognition during manipulation is

heavily dependent on which objects the user looks at. Therefore, mapping this raw

gaze signal to semantic object labels can provide better results [19, 20]. However,

this semantic labeling problem is difficult, since the task is fully three-dimensional

and both the user’s head and the task objects move throughout the task. We present

a strategy for incorporating the contextual information into gaze and an approach

that improves the labeling accuracy on a real dataset. This process shows a general

way to transform a gaze signal for any manipulation behavior into a form appropriate

for different types of activity recognition.

Finally, we present two new approaches for assistance based on this extended

knowledge of the user’s mental state. For the first approach, we will explore using eye

gaze behavior to derive the user’s goal. Specifically, we will develop machine learning

models that predict the user’s goal from the semantic eye gaze labels emitted by our

gaze processing pipeline. We will compare this method with methods that derive goal

4
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predictions from the user control input alone, and we will evaluate a fully working

system in a user study. For the second approach, we introduce a new assistance

strategy, in which we use eye gaze behavior to control how the robot navigates around

an obstacle. People look more often towards an obstacle that they are concerned

about, so a robot can adapt its safety boundary based on how much the user looks

at that obstacle. We will develop a model for determining object concern from eye

gaze behavior and build this assistance type into our shared control implementation.

Finally, we will evaluate the usefulness of this novel assistance behavior in a user

study.

5
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Chapter 2

Background

2.1 Shared Control Paradigms

To ease the problem of robot control, many approaches have been presented to fuse

the user’s input with an autonomously generated signal. One category of assistance

consists of stateless assistance: a robot behavior that can be determined directly from

the robot position, environment, and unchanging elements of the task. In this type

of assistance, no updating human model is used. Perhaps the most straightforward

example of this approach is given by Ramacciotti et al. [21], which proposes an

assistive welding system in which the tool frame motion is divided between the user

and the robot control. For example, the robot maintains forward motion in x while

the user controls the other translational axes y and z. The motion provided by the

assistance is determined beforehand by the task parameters and does not change as

the task progresses. Similarly, Vu et al. [22] reorients how the user controls map into

the rotation axes of the tool frame. This reorientation is a static alteration of the

control scheme that does not vary by task circumstance. A more complex type of

motion assistance is virtual fixtures [23], which modify the compliance of the robot

controller based on its position and the intended direction of motion. For example,

motion along the ±x axis proceeds easily, whereas motion in other directions either

moves more slowly (in the open-loop case, where the control gain is reduced) or results

in a restoring force back to the desired motion surface (in the closed-loop case).

Another set of stateless control schemes aid the operator in avoiding obstacles.
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2. Background

Crandall and Goodrich [24] presents a system that uses a variant of potential fields

to automatically maintain distance from known obstacles, and it shows that adding

this automatic obstacle avoidance behavior enables users to focus on another task

while controlling a robot. You and Hauser [25] compares several strategies for fusing

obstacle avoidance with user input commands. They test three categories of obstacle

avoidance: end-effector control with collision rejection, in which commands that lead

to detected collision are ignored; potential field control, in which the user command

is modeled as an attractive force and environment obstacles as repulsive forces to

maintain distance from obstacles; and full motion planning control, in which after

receiving a motion command, the robot autonomously plans a collision-free path to

the goal position using an RRT and executes that motion. These avoidance techniques

all lead to faster task completion with fewer collisions. While these strategies all vary

substantially in purpose and complexity, they can all be implemented without using

any variable models of human state.

More sophisticated assistance behaviors can be achieved by explicitly modeling

otherwise-invisible parts of the operator’s internal state. In stateful assistance, systems

maintain models of aspects of the user’s intentions and update them over time. Aarno

and Kragic [26] presents a system for recognizing low-level motions (“gestemes”)

using layered hidden Markov models. If an operator is trying to move the device

in a circle, for example, the HMM can recognize this gesture automatically and

provide assistance to maintain it. In a more extensible example, Hauser [27] uses

a dynamic Bayes net to infer a user’s task over a wide variety of task definitions.

The assistance system maintains a distribution over likely tasks and enacts different

assistance categories based on that task recognition.

Often, the internal state required by such assistance is the user’s goal, represented

as a final robot position. Systems predict the user’s own goal among a finite set of

choices by autonomously generating plans to achieve each goal and then comparing

the user’s actual control input with the generated plans. This approach works when

the observations used to infer the goal are exactly the user input commands, and it

has the advantage that the computed task solution can often be reused in generating

an assistive command. This approach has been used to control wheelchairs based on

planner results [28] or based on modelling the deviations of the user’s actual provided

command from a nominal user model [29, 30, 31]. While these models provide motion

8



2. Background

based on the best-matched user goal according to the user model, more complex

uses of the user goal matching are possible. Dragan and Srinivasa [32] proposes

thresholding the user goal matching probability and only providing assistance when

the system confidence in its model of the user goal exceeds a given value. Building

on this approach, shared autonomy [4, 33] plans assistive actions over the user model

uncertainty, which allows the algorithm to provide useful assistance even when exact

goals are not known.

Once an overall shared control system has been selected, the implementation

details are still important to refine. Gopinath et al. [5] ran a study in which users

manually controlled the amount of assistance provided by a shared control system.

Users did use the assistive control, indicating that these methods are useful. However,

they also kept the assistance lower than optimal task completion time would achieve,

indicating that users balance their desire for control with using assistance to reduce

the task time. Dragan and Srinivasa [32] has success with modulating the amount

of assistance based on the algorithm’s confidence in its model of the user’s goal.

Gopinath and Argall [34] change the starting joystick mode so that the user’s initial

input is maximally informative about the user’s goal.

While assistance behaviors that do not model mental state achieve success, adding

explicit user models enables more sophisticated behaviors. Our work builds on these

assistance frameworks by using the more complex mental state representations that

eye gaze enables to build more sophisticated assistance behaviors.

2.2 Eye Gaze

In this thesis, we present the idea of monitoring people’s eye gaze behavior in order to

recognize their intentions during teleoperated manipulation. To understand how eye

gaze behavior relates to people’s intentions during manipulation, and how to process

that signal, we turn to existing eye gaze research.

2.2.1 Eye Gaze During Manipulation

Eye gaze behavior during by-hand manipulation has been a subject of study in

psychology for over twenty years. Johansson et al. [6] describes a study in which

9



2. Background

users were instructed to grasp an object, manipulate it around an obstacle, and place

it down elsewhere. While performing that task, people followed consistent eye gaze

patterns. They looked at relevant locations before interacting with them: people look

at the object until just before they grasp it, the obstacle until just before navigating

around it, and the placement location just before placing the object. In addition, the

paper found that people rarely looked at their own hands and that their gaze was

almost entirely directed towards task-relevant locations. Similar results were found

with people performing natural tasks like making tea [8] and making a sandwich [9].

Perhaps most similar to a teleoperation task is the experiment reported in Sailer

et al. [11], in which users are given a non-intuitive mouse controller and instructed

to move a cursor around a screen. While learning the controls, people watched the

cursor motion on the screen and briefly glanced at the goal positions; once they

were comfortable, people’s eye gaze behavior looked more similar to that in by-hand

manipulation.

2.2.2 Eye Gaze for Intent Recognition

Since eye gaze behavior is so closely tied to people’s goals, it has been widely studied

as a modality for understanding people’s mental state in a variety of applications. We

restrict this review to analysis techniques more closely related to our manipulation

task; see Lukander et al. [35] for a full review. Bader et al. [36] had people perform

manipulation actions on a screen simulating a table and used gaze patterns to

predict people’s next behavior (reaching, moving, or releasing) and intended object.

Matsuzaka et al. [37] showed that people’s gaze predicts their intended grasp object

and strategy (one- or two-handed) in a VR manipulation task. In a human-robot

interaction study, Huang and Mutlu [38] uses hand-crafted features to predict a

person’s food order from a manipulator robot. Duarte et al. [39] shows that people

can follow gaze cues when seeing other people perform an object manipulation task,

and their understanding persists even when a robot is giving gaze cues.

There are several eye gaze analysis strategies available for performing different

kinds of intention recognition. Analysis of the eye gaze dynamics directly without

scene context has been successful at tasks such as identifying whether people are

performing free viewing or visual search [40] or which of several different tasks a
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2. Background

person is performing [41, 42, 43, 44]. However, this type of context-free analysis

performs poorly when trying to recover specific information about how a task is

performed [19, 20]. For tasks such as predicting gaze behavior during walking [45],

driving [46, 47], or combined walking and object manipulation in VR [48], general

gaze-based saliency features about the scene were much less effective than modeling

the dynamics of the actual task.

For predicting specific information about people’s behavior during a task, one

approach often used is scanpath analysis [49]. In this method, the eye gaze signal

is treated as timeseries data rather than being reduced to frequency data. Kübler

et al. [50] quantized scanpaths into a small set of regions and used lexical analysis to

predict if people will pass a driving test. Kubler et al. [51] goes beyond this approach

by dynamically clustering fixations based on SIFT features around the point-of-regard

and uses these sequences to determine if people are performing a tea-making task

for the first or second time. Chen and Ballard [52] uses a hidden Markov model

trained on timeseries gaze and hand position signals to predict which stage of a letter

stapling task the participant is executing. We build on these scanpath techniques

by modifying them for a manipulation task to use the additional semantic context

available.

2.3 Teleoperated Robots With Eye Gaze

Now that we have described how the eye gaze signal reveals mental state in general,

we describe how it has been used for some robotic systems.

2.3.1 Eye Gaze as Direct Input

There has been some research in using eye gaze for direct robot control. The usual

strategy presented is to use the user’s eye gaze as a primary input device for an

autonomous manipulator system [53, 54, 55, 56, 57, 58]. In these systems, people look

at an object they wish to grasp, and the robotic system performs object recognition,

maps the gaze to an object in the scene, and autonomously grasps it. Similar systems

have been presented for wheelchair navigation [59] or mobile robot navigation [60].

In addition, Tong et al. [61] present a scheme for using gaze location as a set point

11
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for a controller during remote surgery, and McMullen et al. [62] use gaze as an input

method to a screen controller which is paired with a brain-computer interface directing

a robot arm. While eye gaze can be used as a direct input as seen here, our approach

instead monitors the user’s natural eye gaze behavior while completing a task.

2.3.2 Natural Eye Gaze for Shared Control

Rather than using eye gaze as direct input, in this thesis we propose using natural

eye gaze as an indirect input for shared control. This idea has been discussed by

Admoni and Srinivasa [63], which proposes to infer the user’s goal based on how close

their gaze is to each of the possible goals, and Nikolaidis et al. [64], which proposes a

framework for modeling user intention from gaze with naive Bayes updates. Possibly

the most similar work published recently is Stolzenwald and Mayol-Cuevas [65], in

which people operate a handheld controller to interact with objects on a screen. The

user’s natural eye gaze behavior is used to predict which object they will interact

with next, and they show that assisting towards or against that goal influences the

user’s task success. We build on these approaches by using more knowledge about the

eye gaze signal and the dynamics of the scene to more accurately infer the user’s goal.

Moreover, we demonstrate additional categories of assistance that rely on additional

inference from gaze beyond just looking at the user’s goal.

12



Chapter 3

Eye Gaze and Mental State

3.1 Introduction

To build assistive systems based on eye gaze behavior, we must first understand

how people use their eyes during teleoperated manipulation. By understanding how

people’s eye gaze corresponds to their mental state and the mechanics of the task,

we can build systems that use the gaze signal to determine when and how to apply

assistive controls. Understanding this connection is foundational to developing novel

assistance behaviors.

We start by conducting a user study to capture eye gaze during teleoperated

manipulation. We asked 24 users to perform a food acquisition task by teleoperating

a robot arm while we recorded their eye gaze patterns. We found that while people

look primarily at the end-effector of the robot, they also look at their goal objects and

places that cause problems, which matches with results from by-hand manipulation.

Next, we repeat the study with higher quality eye gaze sensors to build a data set of

gaze behavior during teleoperation, which we have made available publicly. Finally, we

propose to conduct a similar study with people with upper mobility impairments who

would be users of this arm in collaboration with the Human Engineering Research

Laboratories at the University of Pittsburgh. This last study will validate that

assistance based on our research will remain useful for likely users of assistive robot

arms.

13



3. Eye Gaze and Mental State

3.2 Completed Work: Eye Gaze During Teleoper-

ated Manipulation

3.2.1 Introduction

For this study, participants were asked to perform an eating task with a robot arm

while their eye gaze behavior was recorded. We found that while people often look at

the end-effector of the robot, they still look at their goal objects periodically during

planning and monitoring glances, which follow particular patterns of the task. In

addition, we describe instances when users encounter task problems and their eye

gaze behavior changes according to the problems they face. These two observations

will serve as the basis for our assistive strategies.

3.2.2 Study Methodology

For eye gaze and assistance validation, we use a robot eating task. In this task,

participants teleoperate a robot to pick up one of three morsels on a plate in front of

them (see Fig. 3.1). This task, introduced by Javdani et al. [4], satisfies several goals:

it allows for clear, symmetric goal selection (among the offered morsels), and it is a

simplification of an eating task, which users with disabilities have indicated is among

the most important functions for such an arm to perform [66]. We use this task for

the studies here as well as later on (with some adaptation) to validate our proposed

assistance strategies.

Figure 3.1: The eating task.
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3. Eye Gaze and Mental State

During the task, participants sit facing a table. In front of them are a robot

arm (a Kinova Mico [67]) mounted to the table and a plate holding three morsels of

food (we use marshmallows for their ease of spearing). Participants began the study

(after informed consent) by receiving an explanation of how to control the robot and

then spending 5 minutes practicing with it. Then, for each trial, participants were

instructed to select and share which morsel they intended to target. They then used

the robot to move the fork held by the robot to a position above their target morsel.

They then pressed a button on the joystick to complete the task, at which time the

robot autonomously moved down to the morsel, then it moved the fork towards the

user’s mouth to simulate most of an eating motion. The actual spearing was done

autonomously so that the minimum robot height could be restricted and we could

avoid table collisions.

During each trial, the user controls the robot using a two-axis joystick via modal

control, which is typical for these types of arms. During modal control, the two-axis

joystick maps to successive pairs of degrees of freedom of the end-effector (x/y, z/yaw,

pitch/roll; see Fig. 3.2). Pressing a button on the joystick cycles through the modes.

The robotic system can process this joystick input directly into end-effector commands

or add an assistance strategy. The five minute practice period helps participants to

understand this control strategy, though it remains difficult for many users.

(a) x-y mode (b) z-yaw mode (c) pitch-roll mode

Figure 3.2: Modal control for joystick-controlled manipulators. The user controls two
axes of motion at a time with a joystick and uses a button to cycle through the three
modes. Figures from Aronson et al. [1].

Participants performed this task five times each for four different assistance

conditions, fully counterbalanced over 24 participants. In this study, the assistance
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conditions consisted of full teleoperation, in which the users had complete control;

shared autonomy, a policy-based assistance blending strategy (elaborated on in

Sec. 5.2); policy blending, an alternate, more conservative assistance strategy; and

full autonomy, in which the robot selected a morsel and planned a trajectory itself

while ignoring all user input. While eye gaze was collected for all conditions, we

focused on the teleoperation and shared autonomy assistance conditions primarily, as

they represent the conditions most related to our intended use. Eye gaze data was

collected over a total of 120 trials per condition. Eye gaze data was collected using a

Pupil Labs Pupil monocular eye tracker [68]; see Sec. 4.2.1 for additional information

about how this sensor is used.

3.2.3 The HARMONIC Data Set

After publishing the results of the previous study, we decided to repeat the study

in order to amass a higher quality data set that would be appropriate for quanti-

tative analysis. To do so, we repeated the study described above, but with a few

enhancements. First, we upgraded the eye gaze sensor to a binocular sensor, which

gives much higher quality gaze sensing for three-dimensional gaze. We also recorded

more of the internal gaze sensor data for later postprocessing. Second, we altered the

assistance algorithm slightly, by replacing the shared autonomy and blend conditions

with two different levels of shared autonomy, and replacing the autonomous condition

with a mode in which goal intention was derived from the user input but actual

control direction was supplied entirely by the autonomous system. Finally, we added

an electromyography sensor on the user’s wrist. This data set has been made publicly

available at harp.ri.cmu.edu/harmonic and is under review; a preprint is available

on arXiv [69].

Once the raw data was collected, we segmented all of the gaze data from the

teleoperation runs into distinct fixations and manually matched to each fixation which

of the objects in the scene the participant was looking at (scene objects are shown

in Fig. 3.3). Four coders labeled the fixations with one of ten labels or unknown.

Twelve randomly-selected trials (10% of the data) were coded by all coders, and the

average pairwise Cohen’s kappa (inter-reliability rating) was 64.5% indicating good

agreement. We expand more on the details of this labeling process in Chap. 4.
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3. Eye Gaze and Mental State

Figure 3.3: Fixations were manually assigned to one of ten scene keypoints, which
were the three goal morsels and each robot joint. For bulk comparison, scene keypoints
were also grouped as shown in the colors of the scene. Figure from Aronson and
Admoni [2].

3.2.4 Eye Gaze Behavior Results

Figure 3.4: Vertical position of gaze points in the world image over time from a
representative trial. Twist direction colors indicate which DOF is being controlled
by the participant through the joystick; physiological gaze colors and dots indicate
detected fixations, smooth pursuits, and saccades (see Sec. 4.2.2). Plate glances are
outlined with either a black square (planning glance) or colored circle (monitoring
glance). Shaded sections highlight two examples of repeated monitoring glances.
(Figure and caption from Aronson et al. [1]).
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To understand the broad patterns of eye gaze behavior during teleoperation, we

examine the participant’s eye gaze behavior during one teleoperated trial (Fig. 3.4).

In this run, the participant begins by performing a planning glance: the user looked

at the end-effector of the robot, then their target object, then back to the end-effector,

all without moving the robot. Next, the participant moves the robot in the x/y mode

to the approximate location of the end-effector above the morsel, and they watch the

end-effector through the entire process. The participant then toggles to the z/yaw

mode and lowers the robot in z, while performing a monitoring glance: alternating

focus between the end-effector and the target while the robot is moving. Then, the

participant aligns the fork vertically above the morsel while moving in yaw, pitch,

and roll; they look at different places on the end-effector but do not glance at their

target. Finally, the participant performs fine alignment in x, y, and z, performing

monitoring glances throughout.

From this example, we derive some generalizations about eye gaze during teleop-

erated manipulation:

People spend a lot of time looking at the end-effector of the robot. Unlike

in by-hand manipulation, people look at the end-effector of the robot throughout

the trial. Specifically, 68.1 ± 2.1% of the fixations during each trial were at the

end-effector or tool. Presumably, this gaze difference is due to people needing visual

feedback to determine the location of the robot end-effector, whereas during by-hand

manipulation, people can use their own proprioception to determine their hand

position.

People look at their goals based on the status of the task. As indicated

above, two eye gaze patterns recurred: planning glances, in which people held the

robot stationary and alternated their focus between the end-effector of the robot

and their goal object, and monitoring glances, in which people moved the robot

while looking back and forth between it and their goal position. These patterns

were frequent, with planning glances appearing in 76% of trials. In addition, morsel

monitoring glances were significantly more frequent during translation than during

rotation (Fig. 3.5). Repeated morsel monitoring glances, in which participants checked

the morsel position more than once while they watched the robot end-effector, also
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Figure 3.5: Mean frequency of planning and monitoring glances to the plate during
each robot assistance mode. Monitoring glances are subdivided by joystick control
direction. * indicates significance at the α = 0.05 level; ** at α = 0.01. Figure and
caption from Aronson et al. [1].
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Figure 3.6: Proportion of joystick control sequences of the same mode that contained
multiple (≥ 2) monitoring glances, subdivided by their control mode. * indicates
significance at the α = 0.05 level. Figure and caption from Aronson et al. [1].

occurred more often when in the x/y translation mode than in the pitch/roll pure

rotation mode (Fig. 3.6). This distinction between rotation and translation may be

because participants find rotation harder [70] or because an external reference for

the target is less necessary during rotation. In both cases, we find that the timing of

meaningful plate glances is highly related to the dynamics of the task.

Another key insight from this study is how people behave when they encounter

problems in the task [3]. While these incidents occur infrequently in the dataset,

we can nevertheless examine some case studies to understand how people’s eye gaze

changes when something goes wrong. To illustrate this phenomenon, we describe two
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case studies that appeared in our HARMONIC data set (see Sec. 3.2.3).

Figure 3.7: When the robot occludes the goal morsels, people move their heads for a
better view. Figures modified from Aronson and Admoni [3].

People move their heads to compensate for robot occlusion (Fig. 3.7). In

several cases, people moved the robot into a configuration where the robot itself

occluded their view of the target morsel. In these situations, people often moved their

heads significantly more than usual in order to get a better view. While this pattern

is not revealed through semantic gaze analysis (see Sec. 4.3), it can be obtained from

the raw gaze signal and the head motion. Knowledge that the operator is struggling

to see a particular object can be used to supply useful contextual assistive actions.

Figure 3.8: When the robot moves into a problematic joint configuration, people look
at the joint that is causing problems. The red dot represents the participant’s gaze
location. Figure modified from Aronson and Admoni [3].

People look at robot joints during kinematic failure (Fig. 3.8). As noted

above, people often look at the end-effector of the robot. People rarely look anywhere

else on the robot, except for one notable case: when the robot goes into a problematic
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kinematic configuration, people will look at the joint that is causing them an issue.

For example, the robot has two general configurations while being teleoperated

downward, which we can call elbow-down and elbow-up (see Fig. 3.8). In the elbow-

down configuration, the robot cannot be moved towards the table, as the robot joint

collides with the table before the target position is reached. It is difficult to fix this

problem with only end-effector control, as the motion required is by definition within

the nullspace of the joint Jacobian. When this problem occurs, people often look

at the location of the joint that is causing them a problem. Again, with contextual

information, this eye gaze pattern can indicate to an assistive system that corrective

behavior would be especially useful.

3.2.5 Conclusion

In this section, we discuss a general framework for understanding human eye gaze

during manipulation, either by robot or by hand: people look at objects that are impor-

tant to the task. This pattern develops differently between manual and teleoperated

manipulation, but shares some themes:

• People look at the end-effector of the robot most of the time (though they do

not look at their own hands).

• People look at the target of their manipulation at times related to the progress

of the task.

• People look at the locations of potential failure, whether obstacles (in manual

manipulation) or kinematic failures (in teleoperated manipulation).

These results build a foundation for using eye gaze as a signal for assistive manipulation.

By validating that people indeed look at their goal objects while teleoperating a

robot, we show that this signal can be used to predict the operator’s goal. Therefore,

we can compare the use of eye gaze for goal prediction with the input-based strategies

used by other assistance approaches. In addition, we find that people look at the

scene differently in different failure situations, so eye gaze can enable additional

assistance strategies beyond just goal assistance. Finally, the data set collected and

the qualitative patterns found provide a platform for algorithmic processing of the

eye gaze signal.
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3.3 Proposed Work: Eye Gaze in Patients with

Upper Mobility Impairments

While the study described above revealed compelling patterns in the eye gaze behavior

of robot arm operators, it was only conducted on non-disabled users. Since the

ultimate target of this assistance system is to be used by people with disabilities that

prevent them from having full mobility, it is necessary to ensure that these patterns

recur in that population. To verify that the eye gaze patterns that we described are

representative, we propose to run another data collection study with participants

drawn from a population of likely arm users.

To perform this study, we are building a collaboration with the Human Engineering

Research Laboratories (HERL) at the University of Pittsburgh. HERL has extensive

experience working with people with mobility disabilities, including assessing the

robot we have used in various tasks [71]. We have been working with Dr. Joshua

Chung, a postdoc in the lab, to put together an IRB and prepare a study.

We anticipate that the study will answer the following research questions:

RQ1 What patterns of eye gaze behavior occur during teleoperated manipulation by

SCI users? Which of the patterns described in manual and teleoperation by

non-disabled users recur, and which differ?

RQ2 What are the systematic challenges with collecting and analyzing eye gaze

behaviors in this community? Are there aspect of the disability that makes the

signal particularly noisy or different from that of non-disabled users?

RQ3 How do these users perceive assistive behaviors such as shared autonomy?

To investigate these questions, we will repeat the study detailed above with modifica-

tions appropriate to the new population. While the modifications will be developed in

collaboration with HERL, we anticipate having to resolve several questions. We must

determine clinical standards to measure level of disability and determine appropriate

participants. We also need a plan for adapting our study for use with people who come

with their own wheelchairs. We anticipate resolving these questions in collaboration

with HERL and through piloting with the population.
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3.4 Conclusion

In this chapter, we discussed our study of eye gaze behavior during teleoperated

manipulation. These insights lay the groundwork for using gaze behavior for shared

control.

3.4.1 Completed Work

The original study and eye gaze results were presented at HRI 2018 [1]. The examples

of anomalous eye gaze behavior correlating to task failure were collected at the

Fundamentals of Joint Action workshop at RSS 2018 [3]. The HARMONIC data

set [69] is under review.

3.4.2 Proposed Work

One additional study will be conducted to determine the applicability of the above

results to the target population. This study will be conducted in collaboration with

HERL at the University of Pittsburgh. The study itself is well developed, as it is

similar to the one already conducted, though modifications will need to be made for

the change in population and location. The collaboration is currently working on

preparing an IRB. We anticipate that this work will result in one paper published at

a robotics and assistance conference such as ASSETS or HRI.
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Chapter 4

Eye Gaze Analysis Pipeline

4.1 Introduction

To use our insights about eye gaze behavior to enable assistive algorithms, we must be

able to automatically collect and analyze the eye gaze signal. Eye trackers, by default,

emit a 2D (or 3D) coordinate that represents their user’s point of regard relative

to a scene camera. While using this raw signal directly enables some gaze-based

inference [40, 41, 42, 43, 44], determining specific information about task parameters

is difficult without contextual information about the task. Therefore, we process this

signal to incorporate this task information.

To process the signal, we make some assumptions:

Users focus on one object at a time. In particular, people look directly at

objects of interest. This assumption generally holds during by-hand manipula-

tion [6, 72, 9]. While peripheral vision does provide some assistance for by-hand

manipulation [73], the central assumption that gaze is task-directed is strongly

supported in the psychology literature [19].

Users look at known objects. Manipulation tasks tend to involve interacting

with a limited number of objects that stay unchanged during the task. Since glanced

objects are task-relevant [8, 9], we assume that the the majority of informative glances

are to the set of objects relevant to the manipulation task. Any off-object glances are
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assumed to be noise or a signal that (for example) the user is not paying attention to

the task, so they can safely be combined into a single category.

These two assumptions enable us to incorporate context into the gaze signal by

labeling gaze data with the object that the user is most likely looking at during that

time. Then, rather than raw gaze data, we use sequences of object labels as input

to intent inference systems. Since assistive manipulation systems usually require

their own object detection, object tracking is already present in the system. This

processing pipeline converts the raw gaze data to a format where context is already

included, which eases the development of intent inference systems.

Point of  

regard

Eye images Pupil detection

Gaze calibration Gaze model
Eye tracking

Clustering

Velocity calculation

Combining

Position features

Event detection

Event labeling

Semantic gaze labeling
Velocity features

Labeling

Fixations

Keypoint 

locations

Tag detection

Keypoint 
positions

Egocentric 
transformation

Transformations
Object detection

Figure 4.1: Flow chart of the gaze analysis pipeline. Raw eye gaze is subdivided into
fixations and then labeled with a keypoint supplied by an (external) object tracking
system.

The processing pipeline proceeds through several steps (Fig. 4.1). First, the raw

eye gaze data is collected using an off-the-shelf eye tracker. Next, the eye gaze data
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is segmented into fixations, corresponding to physiological principles of eye gaze

and easing the classification problem. Then, each individual fixation is labeled with

the most likely object in the workspace that it corresponds to. Finally, the timed

sequences of foveated objects is analyzed according to the needs of our assistance

procedure.

4.2 Background: Collecting the Eye Gaze Signal

4.2.1 Eye Gaze Sensors

Developments in eye tracking technology over the last several years mean that tracking

gaze direction in a real-world environment at high sample rates is now possible. While

significant research has been done using remote eye trackers that determine where

people are looking on a screen, for our application is it most appropriate to use a

mobile eye tracker, such as the Pupil Core [68] or the Tobii Pro Glasses 2 [74] (Fig. 4.2).

These systems consist of a glasses-like frame worn by the user, on which a number

of cameras are mounted. One or two IR cameras are mounted above the users’ eyes

(corresponding to a monocular or binocular setup) and record high-frequency video

of the eyes themselves. In addition, a forward-mounted (“egocentric” or “world”)

camera captures the scene from the point of view of the user.

(a) Pupil Core binocular eye tracker. (b) Tobii Pro Glasses 2 binocular eye tracker.

Figure 4.2: Mobile eye trackers.

The first step in the sensor pipeline is to identify the center point of the user’s
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pupils on the eye camera image. Typical algorithms for pupil detection include simple

region and curvature detection algorithms or more sophisticated 3D eyeball models.

These models also emit pupil detection confidence values (between 0 and 1), which

can be used to filter out poor-quality data or user blinks. In any case, this algorithms

is usually packaged with the eye tracker itself. In all the work discussed here, we used

the Pupil Labs Pupil tracker with their built-in pupil detection.

Next, the pupil center points must be mapped to the gaze point in the world

camera. This mapping is typically found by performing a calibration procedure, in

which the user is instructed to look at a camera target in the workspace and an

operator moves the target around. For screen calibration, it is typical to perform a

nine-point calibration procedure, in which the tag is moved to each point in a 3-by-3

grid encompassing the region of interest. For 3D eye tracking, we use a 27-point

calibration procedure, where the tag is moved to each point in a 3-by-3-by-3 grid

encompassing the workspace of interest. Recording calibration data at different

depth planes is necessary for obtaining good results in 3D [75]. While improving the

calibration fitting process is an active area of research [76], we use the off-the-shelf

method provided by the eye tracker. Once the calibration data is collected, a model

(typically a 2D polynomial) is fitted to the eye and world camera data. Care must be

taken to ensure that the user’s head moves as little as possible during calibration: the

calibration is most accurate for interpolation among the calibration points, so their

range must cover the user’s workspace. Motion of the head during calibration can

lead to reduced coverage in the gaze calibration space. Once again, these calibration

algorithms are typically bundled with the eye tracker itself. In this work, we use

the 27-point calibration available as “manual marker calibration” on the Pupil Labs

software.

The output of the mobile eye tracker includes two 120Hz streams of pupil pixel

location in the eye cameras and one 30Hz stream of gaze target pixel location in the

world camera. This raw data is processed in the rest of our pipeline.

4.2.2 Event Detection

To simplify the process of identifying what objects people are looking at, we can

take advantage of some of the physiological characteristics of human gaze. Rather
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than having free control over eye gaze direction, people follow consistent eye gaze

patterns, which consist primarily of fixations (≈ 500− 2000ms stationary periods)

separated by saccades (rapid ≈ 100− 500 ms ballistic trajectories between fixation

locations). Controlled eye gaze motion typically only occurs in two situations: smooth

pursuits, when someone looks at a moving object and follows it with their eyes, and

vestibulo-ocular reflex (VOR), when people move their heads and their eye gaze moves

to compensate while focusing on the same object. Therefore, when determining what

object people are looking at, we need not perform the classification problem at the

sample rate of the eye gaze sensor. Instead, we can perform saccade and fixation

segmentation (known in the literature as event detection) and assume that during a

fixation, smooth pursuit, or vestibulo-ocular reflex, the entire period is spent focusing

on the same object.

There are two traditional algorithms for event detection: dispersion thresholding

(I-DT) and velocity thresholding (I-VT) [77]. Both depend on noting that the point-

to-point velocity during saccades are generally much larger than during fixations (or

VOR, or pursuits). In I-DT, a measure of dispersion (e.g. variance) is calculated

over windows of the eye gaze signal. Windows less than a manually-chosen value are

determined to be fixations, while windows above the value are labeled saccades. In

I-VT, the point-to-point velocity of the signal (the numerical derivative) is computed,

and each point is labeled a fixation or saccade if it is below or above a custom

threshold. Then, successive fixation labels that exceed a minimum fixation time are

fused together and determined to be a single fixation.

For this work, we use a variant of I-VT, known as I-BMM [78, 79]. This method

similarly calculates the velocity of the eye gaze signal (by angle), but learns a dynamic

threshold by fitting a 2-component Gaussian mixture model to a sample of eye gaze

data. Then, adjacent fixation labels are fused, and fusions that exceed a specified

minimum time are labeled as fixations. A python implementation that works both

offline and online was written and made open-source1.

Our event detection algorithm varies slightly from the standard eye tracking

approach due to the dynamics of our task. First, we do not distinguish between

fixations, pursuits, and vestibulo-ocular reflexes. In the eye gaze signal, fixations

appear as periods of zero velocity, whereas pursuits and VORs appear as periods

1http://github.com/HARPLab/ibmmpy
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4. Eye Gaze Analysis Pipeline

of small but nonzero motion. However, since all three categories involve the user

focusing on a single object, for labeling objects of interest the distinction is not

important. Therefore, in our fixations, there may be some internal motion, which may

make distinguishing between saccades and fixations more difficult. However, saccade

motions are still significantly significantly faster than pursuit or VOR motions, and

I-BMM still gives good results. Even if pursuits are split into several subsequent

fixations, the labeling procedure (below) should still label them the same, and a

corrective procedure at the end can fuse adjacent fixations on the same object into a

single label.

4.3 Completed Work: Semantic Gaze Labeling

One of the challenges of extracting information from eye gaze behavior is incorporating

the scene context into the signal. While using the raw dynamics of the signal has

been effective for such problems as activity recognition (visual search vs. scene

viewing) [80, 36] or expertise measurement [10], the information we are concerned

with is intrinsically tied with the specific objects of the task. Therefore, we choose to

first process the data to incorporate semantic information about what objects people

are looking at.

To incorporate this semantic information, we assign to each fixation a label

indicating which of a pre-selected set of task objects the user is looking at. This

approach makes the gaze data motion- and calibration-independent, which should

enable more accurate processing. We also improve on the several existing algorithms

that use 3D object tracking for fixation identification [81, 82, 83, 84, 85, 86] by

presenting velocity features (Sec. 4.3.3 and Aronson and Admoni [2]), which track

the motion of the objects to improve labeling accuracy.

4.3.1 Formal definition

Formally, we describe the problem as such:

Given: a sequence of eye gaze locations segmented into fixations It = (it0, · · · , itmt),
where It is an index set representing a consecutive subsequence in τ of the original

gaze sample gτ . These fixation subsequences are derived using an event detection
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τ Index into individual eye gaze samples (typically 30Hz)
gτ Raw gaze sample, as a pixel in an egocentric camera
t Index into individual fixations
It = (τ t0, · · · , τ tmt) Index set representing fixation t
kiτ Keypoint location for keypoint i at sample time τ
kit Mean value of the keypoint location during fixation t, meanτ∈It k

i
τ

`t Assignment of fixation t to one of the keypoints i ∈ (1 · · ·n)
ct Mean value of the gaze location during a fixation, meanτ∈It gτ
pit Value of position feature corresponding to keypoint i for fixation t
δft Fixation-to-fixation difference between fixation t−1 and fixation t

δkijt Difference between the location of keypoint i during fixation t−1
and the location of keypoint j during fixation t

vit Value of velocity feature corresponding to keypoint i for fixation t

Table 4.1: List of symbols used for semantic gaze labeling.

algorithm, as described in Sec. 4.2.2.

Given: A set of timeseries keypoint locations kiτ , determined from an object

detection algorithm. Each keypoint ki is a semantically relevant object in the

workspace (as determined manually by the experimenter).

Goal: Assign to each fixation t a label `t ∈ (1, · · · , n) representing which keypoint

the user is likely to be looking at for that particular fixation. Then, the gaze can

be represented as a sequence (f1, · · · , fn) where ft = (`t, dt) represents both the

fixation’s label and its duration (dt = τ tmt − τ
t
0).

4.3.2 Position features

One straightforward way to compare the fixation subsequence to each keypoint to

determine how well they align is to use the distance between them averaged over the

entire fixation (see Fig. 4.3a). In particular, let

ct = meanτ∈It gτ

represent the average gaze point during the fixation, and

kit = meanτ∈It k
i
τ
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(a) Position features. (b) Velocity features.

Figure 4.3: A schematic representation of the calculated features. Colored circles
represent keypoints. Filled circles represent keypoint positions at the current time.
Outlined circles represent keypoint positions at the previous time, with the solid
outlined circle representing the keypoint that was assigned as label; the other previous
keypoints are dashed. The filled red star represents the average fixation location at
the current time, and the outlined star the previous fixation location. Figure 4.3a
represents the position features at the current time; the closest keypoint to the
fixation is the blue one, but the distance is similar to the green distance due to a
constant offset. Figure 4.3b represents the velocity features; the relative motion that
the fixation would have taken between the previous time and the current time is
represented by a dashed arrow for each keypoint and the observed relative motion by
the dashed red arrow. The high similarity between the blue arrow and the red arrow
leads to a small velocity feature for the blue keypoint independent of the constant
offset. (Figure and caption from Aronson and Admoni [2].)

represent the average keypoint location for each keypoint i during each fixation t.

In the case of an actual fixation, the gaze is roughly stationary and this sequence

should have small variance. During pursuit or VOR, the point will move during the

sequence so the average is a poor measure, but by assumption the corresponding
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keypoint moves similarly, so any error induced by taking the mean will be matched

by the error in the keypoint.

Once the means are calculated, we can determine a position feature by computing

the distance between the fixation mean and the position mean,

pit = dp(ct, k
i
t), (4.1)

where dp is a distance function over gaze points gτ . (See Appendix A for details on

calculating this distance function).

4.3.3 Velocity features

One issue with the position features described above is that they tend to be highly

susceptible to position error. Many of the errors in the gaze signal, such as calibration

error, appear as large slow-changing position errors. To counteract the effect of

constant errors, we can draw inspiration from signal processing and take the derivative

of the comparison (see Fig. 4.3b). In particular, if we assume that

ct = k`tt + εt,

where ε is a roughly constant error term (∂ε
∂t

is small), then if we subtract the same

equation for the previous fixation we get

ct − ct−1 = k`tt − k
`t−1

t−1 + (εt − εt−1).

By assumption, εt − εt−1 ≈ ∂ε
∂t

∆t is small. Therefore, if `t is the correct label,

(ct − ct−1)− (k`tt − k
`t−1

t−1 ) ≈ 0,

so this feature value should be smaller for correct values of `t. Thus, we want to

compare how the change of gaze target between fixations compares to the change of

keypoint locations between fixations.

Formally, define

δft =
−→
dp(ft−1, ft)
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to represent the vector change between ft−1 and ft. (See Appendix A for a definition

of
−→
dp). Then, we can determine the vector change between keypoints i and j during

fixations t−1 and t respectively by computing

δkijt =
−→
dp(k

i
t−1, k

j
t ).

Finally, we compute the velocity feature vit that measures how well fixation t matches

keypoint i as

vit = dv(δpt, δk
`t−1i
t ),

where `t−1 represents the label (keypoint index) assigned to the previous fixation and

dv is a distance function over velocities defined in Sec. A. Note that this velocity

feature term relies on the label assigned to the previous fixation, `t−1. This dependency

makes this feature vulnerable to stacking error: if the previous label `t−1 is incorrect,

the value of this feature is meaningless. So it works best not on its own but when

paired with other features.

4.3.4 Classification Algorithm

To assign a label to each fixation, we use a simple feature weighting procedure:

`t = arg min
i

(γpit + (1− γ)vit),

in which the label is assigned based on a weighted linear combination of the position

and velocity features (represented by the parameter γ). While more sophisticated

classification algorithms are possible, the natural meaningfulness of the features

chosen combined with the desire to evaluate the features as directly as possible means

that higher complexity is unnecessary. In addition, if we wish to extend the labeling

procedure to produce a distribution over keypoints rather than a keypoint itself, we

can instead use the softmax

p(`t = i) = soft max
i

−(γpit + (1− γ)vit).

To evaluate this algorithm, we compare three different variants. For the first

algorithm to compare, we use the position features only and discard the velocity

34



4. Eye Gaze Analysis Pipeline

features; that is, we set γ = 1. Next, since the feature vit depends on the value of

`t−1, we derive this previous value in two different ways. In one variant, the true

position-velocity variant, we use the true value of `t−1 when finding the value of `t.

This variant is not representative of how this algorithm would be used in practice,

as it requires access to the true label. However, it isolates the classification of each

data point so that an incorrect classification does not cause later problems, and

thus it more directly represents the ideal power of these features. We also evaluate

the sequential position-velocity variant, in which we use the labeled value of `t−1.

This method represents how this algorithm would be used in practice, but it is more

susceptible to error stackup. These three approaches are compared in the following

section.

4.3.5 Evaluation of Position and Velocity Features

To determine the usefulness of the velocity features described above, we perform

two evaluations. For the first, we generate synthetic eye gaze data so that the

gaze error can be more properly controlled. For the second, we hand-labeled the

fixations for the HARMONIC dataset (see Sec. 3.2.3) and evaluated the semantic

gaze labeling procedure on that data. Throughout, we use γ = 0.8, as determined

through cross-validation. In both cases, we find that using velocity features as part

of the classification strategy increases the robustness of the classification accuracy to

larger differences between gaze and keypoint positions.

We generated a synthetic dataset to ensure that the velocity features were useful

in an idealized case. To build this dataset, we first generate trajectories for four

keypoints in an image frame by having them follow random Gaussian walks starting

from uniformly random starting positions. Then, we generate a randomized gaze

signal by first generating a random segmentation of the time period following typical

eye gaze dynamics to generate fixations and then assigning each of these fixation

to one of the keypoints at random. Finally, the gaze signal during each fixation is

determined by adding random noise around the corresponding keypoint position. This

procedure is repeated to generate 200 keypoint and gaze trajectory sets of length 33.3

seconds each (1000 samples). To simulate the effect of a constant offset, an additional

error of fixed magnitude and direction randomized per trajectory is added to the gaze
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signal. This simulated gaze signal is then processed according to the semantic gaze

labeling procedure described above.
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Figure 4.4: Classification accuracy on synthetic dataset. (Figure from Aronson and
Admoni [2].)

The results of the algorithm on this synthetic dataset is shown in Fig. 4.4. This

figure plots the overall classification accuracy on the synthetic dataset as a function

of the magnitude of the offset added to the data. As expected, when the offset is

very small, the position and velocity features perform similarly. However, as the

magnitude of the offset increases, the velocity-based classification strategies stay more

accurate, whereas the position-only strategy decreases in accuracy. Thus, the velocity

features succeed at being more robust towards constant offsets. In addition, the true

position-velocity strategy outperforms the sequential true position-velocity strategy,

but even the sequential strategy gives benefits over the position-only strategy.

Next, we evaluate these algorithms on the HARMONIC dataset (see Sec. 3.2.3).

For keypoint locations, we used a tag grid present in the egocentric video frame to

compute the egocentric camera extrinsics, which we then smoothed using a Kalman

filter. Then, object positions were projected into the egocentric camera using these

extrinsics and a prior tag grid location calibration step.

To obtain ground-truth labels, four coders examined each fixation that occurred

in the 120 teleoperation-only trials and assigned it a label corresponding to each robot

joint and morsel target, or −1 if the fixation was determined to be noise. In addition,
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all coders coded the same 10% of the trials (randomly selected), and the average

pairwise Cohen’s kappa (inter-rater reliability) score was 0.645, indicating acceptable

agreement. Determining dependence on the error magnitude is more difficult than

in synthetic data, as the offset is not controllable. To calculate this dependency, we

first calculated the angle distance between each fixation and the mean position of

its true label, then we binned fixations based on this value with a width of 0.6◦ and

discarded bins with fewer than 20 members.
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Figure 4.5: Classification accuracy on the HARMONIC dataset. (Figure from Aronson
and Admoni [2].)

Fig. 4.5 shows the accuracy of our classification strategies applied on the HAR-

MONIC dataset as a function of offset bin. As in the synthetic data, all methods

have pretty good accuracy for small errors, though the position-only method slightly

outperforms the others. As the offset increases, the position-only and sequential

methods drop off, whereas the true velocity method maintains its performance. Thus,

velocity features are indeed useful for improving the accuracy of semantic labeling.

4.4 Proposed Work: Sequence Modeling

The pipeline above describes how to process the raw gaze signal obtained by a sensor

to recover a sequence of foveated scene objects (drawn from a finite set) along with
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start and end ties. We propose to use this sequence as an input to various learning

algorithms to make inferences about the users’ mental state.

4.4.1 Goal Prediction

The most direct use of eye gaze, and one that is well-supported in the literature [72, 6,

38], is to determine a user’s intended goal. In our benchmark task, users manipulated

the robot to pick up one of three different morsels on the plate. Users reported which

of the three morsels they were intending to spear, and their success was reported for

each trial. Therefore, this task serves as a good benchmark to evaluate this signal’s

ability to reflect the user’s goal within this context.

4.4.2 Failure Detection

Another use of this process eye gaze signal is to determine when something has

gone wrong during the process. As discussed above, when something goes wrong,

people’s eye gaze patterns often change: they look at unexpected objects or elements

of the scene that are causing failures. Therefore, this behavior suggests that this eye

gaze pattern can reveal that people perceive there to be a problem with the robot’s

behavior using a signal almost completely separate from the robot’s own self-analysis

of its performance.

4.4.3 Challenges

Sensitivity to errors in sequence data. In our dataset, the three goal morsels

were placed close together within the gaze space. Due to the gaze error, it can be

especially difficult to distinguish between these goals. For better goal prediction

results, a more reliable gaze tracking system, a more robust labeling procedure, or

redesigning the experiment to ease their differentiability should lead to better results.

Handling fixation durations. The eye gaze signal output from the pipeline

consists of labels paired with durations of the fixation, which can persist anywhere

between 200-1200 ms. Standard hidden Markov models (HMMs), which are a common

strategy to analyze sequence data and have been applied successfully to gaze signals
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in the past [52] do not consider this timing. Two approaches to handle the time are

to (1) neglect the time itself and consider the entire fixation as a single observation

or (2) resample the sequence based on some consistent interval, repeating labels for

as many samples as they contain. The first approach neglects important information

and is sensitive to changes in the event detection procedure; the second can lead

to data imbalance. It may be fruitful to consider extensions of HMMs and Markov

models that include state durations.

Obtaining ground truth for user intention. While measuring user intent is

useful, it is difficult to obtain ground-truth labels. Often, people are not conscious of

their intentions or their intentions change during the process. For the HARMONIC

dataset, participants reported their intended morsel before beginning the trial, but

some changed which morsel they sought during the task. Furthermore, intentions

such as rectifying kinematic failures or obstacle avoidance are difficult to identify

even by hand, as they often do not have clear start or end points, and the user may

be trying to solve that problem while simultaneously making task progress elsewhere.

Therefore, to build actionable user intention models, we must design specific situations

where experiments can yield meaningful results.

4.5 Conclusion

In this chapter, we laid out a pipeline for processing the raw eye gaze signal into a

state usable for assistance. First, we discussed related work on signal collection and

event detection. Next, we described our completed work on semantic gaze labeling.

Finally, we proposed some strategies for analyzing the signal in ways that will lead

to use in assistance and showed some preliminary results. In the next chapter, we

discuss how to use this processed signal for manipulation assistance.

4.5.1 Completed Work

The velocity features and full pipeline were presented at the ACM Eye Tracking

Research and Applications (ETRA) conference in 2019 [2].
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4.5.2 Proposed Work

Ongoing work to improve this pipeline may be published at ETRA, but no specific

additions are proposed as part of this thesis. Proposed uses of the gaze data are

discussed in the next chapter.
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Chapter 5

Eyegaze for Assistance

5.1 Introduction

Now that we have a method of transforming the eye gaze and context information

into a common format, we can use that signal to apply our assistive algorithms. In

this section, we present two approaches to assistance: goal assistance, in which gaze

reveals the user’s goal, and dynamic obstacle avoidance, in which gaze reveals a user’s

concern about particular workspace obstacles. Both behaviors combine inference on

the labeled fixations described above with an assistance behavior that extends the

shared autonomy framework [4]. These two behaviors represent distinct ways to use

the mental state information that gaze reveals in explicit assistive strategies and

demonstrates that eye gaze is a powerful signal for assistive feedback.

In goal assistance, we learn a distribution over intended user goals from users’

eye gaze behavior. We can then combine this goal prediction behavior with a

prediction derived from the user’s control inputs. Eye gaze and user control input are

complementary signals for goal inference: eye gaze gives global information (focused

directly on the goal), whereas control input gives relative information (the next step

on the path from the current point). Therefore, we hypothesize that combining eye

gaze with control input will give a more robust goal prediction throughout the task

and improve the assistance quality. While inferring goal from gaze has been explored

in other efforts, this project represents the first time it is applied in an assistance

framework.
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In dynamic obstacle avoidance, we learn from the user’s gaze how important it is

to avoid particular objects in the workspace. In particular, we hypothesize that people

will look at an obstacle when they are particularly concerned about it interfering

with the robot’s task and will not look at it otherwise. To use this observation, we

develop an assistance behavior that has the robot avoid obstacles with a wider radius

when a user looks at them more. This behavior may occur because the user knows

more about the object than the robot does (the object is fragile, hot, incorrectly

detected, etc) or because the user does not trust the robot’s behavior and prefers a

larger safety margin. In either case, the robot’s increased caution is an appropriate

response. This obstacle avoidance behavior is a novel usage of gaze and should pave

the way for more creative uses of the signal.

We begin by summarizing the shared autonomy framework, upon which both of

these behaviors are built. Then, we describe the goal inference assistance, including

how the probability over goals is determined, how it is incorporated into the assistance

behavior, and how we propose to validate it in a user study. Next, we describe the

dynamic obstacle avoidance behavior, assistance, and proposed evaluation. Finally,

we conclude by proposing additional ways the eye gaze signal might be used for

assistance.

5.2 Background: Shared Autonomy Assistance

5.2.1 Overview

To add assistance, we build on shared autonomy, a framework for shared control

introduced by Javdani et al. [4]. We briefly outline that approach here; for more

details and evaluation, see that paper. Shared autonomy is designed to build on

prior systems by generating assistance proactively whenever it can, in contrast to

other models that require the robot’s certainty to reach a particular threshold before

providing assistance. In addition, the structure of the shared autonomy framework

makes augmenting it with additional behaviors relatively straightforward.

We model the robot action planning as a Markov decision process (MDP), which

is a tuple (X,A, T, Cg), with X the set of all robot states (joint position, velocity,

etc.), A the set of possible robot actions (applied twists), and T : X × A→ X is the
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transition function. The cost function Cg describes the robot’s ideal behavior for

reaching goal g, which we define here as a goal position for the robot. Given a goal g,

the optimal policy πg : X → A can be found using standard reinforcement learning

methods.

To incorporate uncertainty over user goals, the model is extended into a partially-

observable Markov decision process (POMDP) defined as the tuple (S,A, T, Crob, O,Ω).

S = X ×G represents the robot state augmented with the user’s true goal g ∈ G. A

and T are the action set and transition function induced from the underlying MDP.

Crob : S×A×O → R is a cost function that models how the robot incorporates both

information about the goal and the observation to determine its behavior; note that

in this model, the observation o is passed into the cost function. O represents the

observations for the POMDP, which in this formulation is the motion command given

by a user through their control interface (here, a joystick). Finally, Ω represents an

observation model to determine the probability distribution (”belief”) over goals b(g)

from the observation o.

5.2.2 User Input Observation Model

The original shared autonomy framework derives its belief exclusively using the user’s

input command u; that is, O = U . To derive this belief, the framework uses a

maximum-entropy inverse reinforcement learning (MaxEnt IRL) model [87], in which

users are assumed to be noisily optimizing an MDP induced by their goal. Specifically,

let (X,U, T, Cusr
g ) represent the robot control MDP described above, except that the

user provides an input U (e.g., a joystick signal) which is transformed by the controller

using a function D : U → A. Given this model and a particular goal, assume that the

user’s policy follows the distribution πusr(u|x, g). To make this approach tractable,

replace the traditional Bellman equation with a softmin version:

Q≈g,t(x, u) = Cusr
g (x, u) + V ≈g,t+1(x′)

V ≈g,t(x) = soft min
u

Q≈g,t(x, u),

where soft min(x) = − log
∫
x
− exp(f(x)) dx and x′ is the result of applying action u

in state x, i.e., x′ = T (x,D(u)). In this formulation, Q≈g,t(x, u) and V ≈g,t(x) can be
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solved tractably using dynamic programming, and the policy πusr(x|u, g) is defined as

πusr(x|u, g) = Q≈g (x, u)−Q≈g (x, 0).

This expression differs from the expression given in Javdani et al. [4], which uses the

policy πusr(x|u, g) = Q≈g,t(x, u)− V ≈g,t(x). The original approach may give a different

probability for each goal even when the user provides no input, i.e. u = 0. One

could argue that providing no input represents implicit satisfaction with the robot’s

behavior, in which case using the original update rule is appropriate. However, in

our experience, people are more likely to provide no input for other reasons, such as

distraction, planning, mode switching, etc. Therefore, we modify the distribution to

normalize against the assumption of u = 0 rather than the value of the current state

V ≈g,t(x). See Newman et al. [69] for additional details.

The likelihood of a given input sequence (u0, · · · , ut) given a particular goal g and

sequence of states (x0, · · · , xt) is given by

p(u0, · · · , ut|g;x0, · · · , xt) =
∏
t

πusrt (ut|xt, g), (5.1)

and the goal probabilities can be computed according to Bayes’ rule as

p(g|u0, · · · , ut) =
p(u0, · · · , ut|g)p(g)∑
g′ p(u0, · · · , ut|g′)p(g′)

.

This approach represents the observation model, which maps from the user joystick

input u to a distribution over goals p(g|u).

5.2.3 POMDP Solution

Now that the observation model has been defined, we turn to solving the overall

POMDP. To make this behavior tractable, we make the hindsight optimization/QMDP

assumption, which computes a policy assuming the uncertainty will be resolved at

the next timestep. Specifically, this formulation sets

Q(b, a, u) =
∑
g

b(g)Qg(x, a, u),
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the expectation of Q over the goal belief. We further make the assumption when

solving the POMDP that the user will apply no further action after the current

state. That is, the state-action value function Qg is computed from the cost function

Crob((x, g), a, u) by assuming that u = 0. This assumption allows the underlying

MDP to be pre-computed up to the known goal rather than requiring a new solution

whenever the user’s input is given.

We use the cost function

Cusr
g (x, u) =

α, |x− xg| > δ

|x−xg |
δ

α, d ≤ δ
, (5.2)

which attains a constant value α outside a radius δ around the goal position xg and

decreases linearly to 0 within that radius. The robot’s overall cost function is then

set as

Crob
g (x, a, u) = Cusr

g (x, u) + (a−D(u))2,

which is the original, goal-centered cost Cusr
g (x, u) plus a quadratic penalty for the

induced action a differing from the user’s command u (transformed appropriately).

5.2.4 Assistance Behavior

In our model eating scenario, the shared autonomy behavior works as follows. At the

beginning of the task, the robot is positioned far from all goal objects. Even with

an initial uniform belief b(g) = 1/|G|, the POMDP can still find an action that makes

progress towards the goal in expectation, since all goals require reorienting the fork

above the marshmallow and moving towards the spearing plane. As users provide

input, the robot updates its belief, which leads it to continue to move towards the

spearing plane but also start moving towards the appropriate goal. When the robot

has reached the spearing plane, assistance slows down. Since the robot is already close

to its goal, the user’s actions themselves are largely the same as what the assistance

would provide. Once they learned this tendency, many users decided to split the

assistance into two phases: they allow the robot to autonomously plan to the spearing

plane to a point between all of the goals, and then they move the robot within that

plane to achieve their particular goal. In the original study [4], shared autonomy was

45



5. Eyegaze for Assistance

shown to enable users to complete their tasks faster with less user input.

5.3 Proposed Work: Goal Inference

5.3.1 Inferring Goal From Gaze

Inferring people’s goal from gaze traces is a classification problem that can be learned

from data. The input to the problem is a sequence of timed fixations with labels

matching the objects in the scene (as described in the previous chapter). The output

is a probability distribution p(f0, · · · ft|g) modeling the likelihood that a user having

a particular goal would emit the observed gaze history to this point. In addition,

the methods below must have a strategy to incorporate the varying duration of the

fixations into the model.

Several modeling techniques are available to solve the problem. We sketch some

here, but it is ongoing work to determine the best method.

Constant goal emissions. The simplest method is to treat each fixation as an

independent draw from the possible labels. Specifically, assume that the probability

of any given fixation being goal-directed is fixed. That is,

p(fi|gk) =


(

α
1+α

)N(di)

, `i = gk(
1

1+α

)N(di)

, `i 6= gk

where fi = (`i, di) represents a labeled fixation along with its duration, α > 1 is a

scale parameter, and N is a function representing how to handle the fixation duration.

If N(d) = 1 is a constant function, the above model treats each fixation as a single

draw from the goals. If N(x) =
⌊
di/∆τ

⌋
for some constant step size ∆τ , we weight

the fixation by its number of samples, treating each timestep within the fixation

implicitly as a separate draw from among the goals. Using this observation model,

the goal probabilities become

p(gk|f0, · · · , ft) =
αN(k)∑
i α

N(i)
,
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where

N(k) =
∑
i

δ(`i = gk)N(dk)

is the total weight of all samples whose fixation label corresponds to that goal.

Contextual glances with HMMs. A more sophisticated method is to train

hidden Markov models corresponding to each of the goals. This method has the

advantage that it can capture some details of task context. For example, glances from

the end-effector to a goal may be more meaningful than glances from an internal joint

to the goal, as the first may be a monitoring glance while the second an idle glance

away while working out a problem. To build this model, we can train one HMM

for each goal on the HARMONIC data collected (which include annotations of the

user’s target goal) and use cross-validation to select the number of hidden states. For

the sequence, we can use the raw labels themselves (`0, · · · , `t), or duplicate labels

according to the fixation durations to generate a sequence

(`0, · · · , `0︸ ︷︷ ︸
b d0

∆τ
c

, `1, · · · , `1︸ ︷︷ ︸
b d1

∆τ
c

, `2, · · · , `t).

Here, ∆τ is a parameter that sets the level of quantization of the states. Then, the

observation model p(f0, · · · , ft|gk) is given as the probability of that fixation sequence

computed by the model corresponding to gk, and goal probabilities are found through

marginalization.

Additional methods. There are several options for improving the above algo-

rithms. One option involves more explicitly taking the duration of the fixations into

account, possibly as an additional numeric feature alongside the categorical labels.

A second approach involves using contextual information from the robot behavior

to modify the states. Proposed work involves comparing and exploring additional

algorithms.

47



5. Eyegaze for Assistance

5.3.2 Eye Gaze Goal Predictions in Shared Autonomy

To incorporate this goal prediction framework into shared autonomy, we augment the

original POMDP with the fixation observation F t, where f ∈ F = (`i, di) represents

the sequence of fixation labels and durations described above; then the full observation

O is given as O = U × F t. We make the assumption that gaze and user signal are

independent conditioned on the user’s goal; then, we can treat the two observation

models separately and combine them in a straightforward way.

For the gaze, we require a fixation likelihood model in the form

p(f0, · · · , ft|g),

which is derived according to the models described above. When using gaze only, goal

probabilities are derived using a Bayesian incremental update (akin to Eqn. 5.2.2):

p(g|f0, · · · , ft) =
p(f0, · · · , ft|g)p(g)∑
g′ p(f0, · · · , ft|g′)p(g′)

. (5.3)

To combine gaze and control predictions, the conditional independence assumption

allows us to predict goal probabilities from each observation separately and combine

them at the end according to the equation

p(g|f0, · · · , ft;u0, · · · , ut) =
p(g|f0, · · · , ft)p(g|u0, · · · , ut)p(g)∑
g′ p(g

′|f0, · · · , ft)p(g′|u0, · · · , ut)p(g′)
,

where p(g|f0, · · · , ft) and p(g|u0, · · · , ut) are computed according to the observation

models presented in Eqn. 5.3 and Eqn. 5.1 respectively.

5.3.3 Goal Assistance User Study

To evaluate this procedure, we intend to run a user study to compare the relative

benefits of joystick-based and gaze-based goal inference for assistance. We expect to

evaluate the following claims:

H1. Eye gaze provides goal information earlier in the task than joystick does.

H2. Eye gaze and joystick together provide better goal predictions earlier than either

do alone.
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H3. People prefer assistance based on both eye gaze and joystick than using only

one or the other.

The user study will be similar to the spearing study described in Sec. 3.2.2, using

the same object spearing task as described there. However, we propose to alter

the conditions to {no assistance, assistance from control input only, assistance from

gaze only, assistance from combined control and gaze}. We anticipate running a

similar within-subjects fully counterbalanced study with non-disabled participants.

To validate H1 and H2, we can calculate the integral of log loss of goal prediction

accuracy versus progress through the task among each conditions. For H3, we will

ask participants to evaluate each condition and rank the conditions similar to the

measures used in Javdani et al. [4].

5.4 Proposed Work: Responsive Obstacle Avoid-

ance

Using eye gaze to understand people’s goals is a promising strategy for improving

assistance. However, the eye gaze signal, as we have determined, reveals even more

about the task than just people’s intended goal. We focus specifically on one aspect

of mental state: people’s concern about navigating around a specific obstacle in the

workspace. We pair this aspect with an assistance method that adapts the robot’s

path to avoid important objects more widely.

One of our insights from analyzing people’s eye gaze behavior is that people look

at areas of the scene that are likely to cause them problems. As described above, we

identified several examples of people looking at a joint of the robot that was in a

kinematically problematic configuration. However, during normal operation people

almost never look at the internal joints of the robot. In addition, work on by-hand

manipulation [6] suggests that people look at obstacles they are likely to encounter

when navigating around them, and don’t look at them otherwise. Therefore, we

hypothesize that if an obstacle is present in the workplace, people will look at it while

they believe the robot needs to actively avoid it, and will not look at it otherwise.

This behavior induces a new strategy for assistance. In particular, by monitoring

when users look at specific workspace obstacles, an assistance system can determine
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when the user believes those obstacles to be particularly problematic in the path.

From this knowledge, the robotic system can then change how it responds to the

obstacle. If the user expresses concern (by looking more than usual at the obstacle),

the robot can give it a wider berth. If the user does not seem concerned by the

obstacle (by looking elsewhere), the robot can take a more efficient path around it.

(This distinction calls back to the tradeoff between predictable and legible paths [88].)

The impulse for a user to be concerned about a particular obstacle can be caused

by multiple things. If we assume that the robot has a perfect environment model

and safely navigates around objects, a user might still be unfamiliar with the robot’s

operation and be reluctant to trust it. Even if the robot is operating in a safe behavior,

avoiding the obstacle more clearly can help the user acquire trust in the robot’s

operation. Alternatively, the user may know more about the environment than the

robot does. The robotic system may have an error in its object localization, or the

object may have non-obvious traits (like fragility or heat) that the robot does not

know how to detect. Then, the robot giving the obstacle a wider berth will result in

safer performance. Importantly, the system does not need to know which of these

incidents is the case. The robot avoiding the object will produce useful behavior

whatever the reason the user has for provoking it.

5.4.1 Detecting Obstacles to Avoid

The first step in enabling this assistance behavior is to determine when a user is

particularly concerned about an obstacle. As noted above, we have evidence that

people look at a region of the scene that is causing them problems. Furthermore,

research on by-hand manipulation [6] suggest that people look at obstacles when they

are problems, and ignore them otherwise. Therefore, we expect that we can use an

object-oriented glance detection framework to identify when people are concerned

about a particular obstacle.

Specifically, we need to determine a score function robs((f0, · · · , ft)) that, given a

sequence of fixations and an object label obs, determines how much attention people

are paying to that particular object. We will evaluate several possibilities for this

function, including moving average of fixations to the object versus other fixations or a

learned function on a dataset hand-labeled with times when the obstacle is important.

50



5. Eyegaze for Assistance

Functions will be evaluated through piloting and testing on the HARMONIC dataset.

5.4.2 Obstacle Avoidance Algorithm

Once we have a measure for how important an obstacle is, we need to update

the robot’s assistance accordingly. We propose to modify the cost function of the

underlying reinforcement learning framework to change the robot’s behavior. As

described above in Sec. 5.2, we use a POMDP for assistance planning combined

with MaxEnt IR for goal inference. The cost function we use (Eqn. 5.2) contains a

constant penalty α outside a radius δ from the goal which linearly decreases to 0

inside the radius. To add obstacle avoidance, we can add a second term to the user

cost function:

Cusr
obs (x, y) =

0, d > ∆(
1− d

∆

)
β, d ≤ ∆

,

which is a linear penalty for approaching too close to an obstacle defined by the

margin ∆ and the scale β. Then, the total cost function is

Cusr
g = Cusr

g (x, u) + Cusr
obs (x, y),

the sum of the above cost functions.

We can modify the relative importance of the obstacle (and therefore the avoidance

distance) by modifying the scaling factor β. When this value is larger, the robot

will settle to a larger obstacle distance (within the radius ∆). When β is smaller,

the robot is penalized less for going closer to it when pursuing its intended goal.

Therefore, we can perform an update at each time step

βt+1 = βt ∗ γrt ,

where γ is an update factor and rt is our concern function above. When rt > 0,

indicating positive concern, β increases; when rt ≤ 0, indicating lack of concern, β

decreases.

For this project, we will fill out this reinforcement learning framework by adapting

it to run in real time and to match the intent prediction used by the MaxEnt IRL
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algorithm. Furthermore, we will explore alternate formulations, such as potential

fields, that may lead to more successful implementations of this assistance.

5.4.3 Obstacle Avoidance User Study

To evaluate our obstacle avoidance assistance mode, we will again conduct a user

study. We plan to perform a similar study to the spearing one described above

(Sec. 3.2.2), but add an obstacle in the workplace that the user must avoid. For study

conditions, we will consider: (1) No assistance, in which the user teleoperates the

robot directly. (2) Unchanging assistance, which uses the shared autonomy algorithm

with obstacle avoidance but no dynamic updates. (3) Gaze-independent dynamic

updates, where we use our obstacle avoidance update plan but design the concern

function r(t) to include only gaze-independent metrics, such as measuring the distance

between the robot end-effector and the obstacle. (4) Gaze-based obstacle avoidance,

as described here. Furthermore, we can have two conditions for the obstacle: (1)

stationary but safe obstacle, (2) precarious obstacle (e.g. balance an object on top of

our obstacle). To evaluate the study, we will measure task completion time and user

satisfaction with the robot’s behavior.

5.5 Conclusion

In this chapter, we propose two uses of eye gaze to improve automated assistance.

In the first, goal assistance, we use the semantic gaze labeling signal to infer the

user’s goal and adapt the shared autonomy framework to include measurement of

this signal. While we have made progress in developing and evaluating this system,

these results require additional exploration and evaluation. In the second, responsive

obstacle avoidance, we propose a new strategy of using eye gaze: recognizing when

the user expects to be especially cautious about maneuvering around an obstacle and

adapting the assistance to match. We have begun to explore this application, but

additional work remains to develop the assistance algorithm and evaluate it in a user

study.
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5.5.1 Completed Work

We have conducted preliminary work on predicting user goal from their fixation

sequence, which has been presented at the Robotics Institute Summer Scholars

program.

5.5.2 Proposed Work

In this section, we propose two projects which will result in up to three papers. First,

the goal prediction model and study will be submitted to HRI 2021 in October 2020.

Second, the gaze responsiveness model and update method will be submitted to a

conference such as RSS in early 2021, and a user study to evaluate dynamic obstacle

avoidance for assistance will be submitted to HRI 2022 in October 2021.
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Chapter 6

Conclusions

6.1 Summary

In this proposal, we describe how to use natural eye gaze to improve automated

assistance during shared control of a robot arm. We describe multiple studies of

people’s eye gaze behavior while teleoperating a robot and found that people display

consistent gaze patterns as they look at their goals and at potential problems in their

task. We develop a pipeline for incorporating contextual information about the task

into the raw eye gaze sensor data and propose several machine learning approaches

to translating that data into information of the operator’s mental state. Finally,

we propose two gaze-based assistance approaches. First, we proposed to modify

goal-based assistance by incorporating gaze-based goal predictions and comparing

how well gaze predicts users’ goals relative to approaches that use only their control

signals.

Beyond these eye gaze results, moreover, this work shows how observing people’s

natural nonverbal behaviors can enhance human-robot collaboration approaches.

People continuously and passively telegraph their intentions through their eyes, their

body posture, their gestures, their stance, and many other ways, and other people

can read their intentions and concerns directly and implicitly from these signals.

Accessing these signals will enable robots to collaborate more fluently with their

human partners by anticipating their needs. Moreover, the sophistication of this

signal enables more complex assistance paradigms, such as adapting dynamically to
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the user’s preferences about how a task ought to be performed or implicitly learning

that an interaction should be performed in a particular way from the user’s behavior.

This thesis lays the groundwork for broad investigation of the use of natural behaviors

for sophisticated robotic assistance during shared control.

6.2 Future Work

Other work in the eye gaze community has found many different aspects of mental

state that can be detected from eye gaze signals alone. These aspects include a user’s

expertise in completing a task [11, 89, 10], which task a user is performing [80, 44],

or even the operator’s cognitive load [12]. Furthermore, the analyses conducted here

can be extended to predict an operator’s next step during a multi-stage task or when

they are paying attention to the task [8, 9]. Building models to learn users’ intentions

or states based on these signals and developing additional assistance paradigms is a

natural extension of our work.

Moreover, work remains to translate this assistive paradigm directly to the assistive

devices that inspire it. To validate that these assistance approaches are indeed useful

for people with upper mobility impairments, we must evaluate them in a study

with participants who would use a wheelchair-mounted robot arm in daily life as an

assistive device. Eventually, we hope to make this type of assistance available for

commercial assistive robot arms.
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6.3 Timeline of Proposed Work

Fall 2018

Spring 2019

Summer 2019

Fall 2019

Spring 2020

Gaze analysis Gaze pipeline Assistance

Summer 2020

Fall 2020

Spring 2021

Summer 2021

Fall 2021

Fall 2017

Spring 2018

Summer 2018

Defense

Gaze study [HRI ’18]

HARMONIC 
[under review]
Gaze failures 
[RSS FJA ’18]

Velocity features 
[ETRA ’19]

Proposal

Gaze study with 
HERL [HRI ’21]

Goal prediction 
[HRI ’21]

Gaze pattern 
recognition 
[RSS ’22]

Dynamic obstacle 
avoidance 
[HRI ’22]
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Appendix A

3D Math

A.1 Introduction

While Sec. 4.3 describes the general construction of the features used for the semantic

gaze labeling problem, care must be taken when computing actual feature values.

Specifically, we attain better accuracy modeling gaze and keypoint directions as rays

from the camera center instead of 2D elements in an image frame (see Fig. A.1). In

this appendix, we detail the calculations required for this approach.

A.2 Parsing gaze values

Gaze locations are typically given as ordered pairs (uτ , vτ ) representing pixel locations

in an egocentric camera corresponding to where the user is looking. While all the

math described above can be done directly using these pixel locations and Euclidean

distances, that method introduces projective distortion when the user is looking further

from the focal center of the egocentric camera. Therefore, to remove distortion from

these values, we must perform calculations using 3D rotations.

First, we must convert the gaze location (uτ , vτ ) to a ray in 3D from the camera’s
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Figure A.1: In contrast to the 2D semantic gaze labeling procedure shown in Fig. 4.3,
we compute all features in a vectorized, 3D model. (Figure from Aronson and Admoni
[2].)

origin. To do so, we first compute a projective representation of the gaze ray,xτyτ
1

 = K−1

uτvτ
1

 , (A.1)

where K is the intrinsic matrix for the egocentric camera, calculated using cam-

era calibration. Using the same equation, we can transform the keypoint pixel

locations (uiτ , v
i
τ ) to their equivalent projective ray (kxiτ , ky

i
τ ). For simplicity, let

ft = (xt, yt, 1) be the fixation mean location represented in projective coordinates,

and kit = (kxiτ , ky
i
τ , 1) be the keypoint location for fixation t in projective coordinates.
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A.3 Scalar position distance

To compute the position features, we must have a (scalar) distance function dp over

the projective vectors. We can use the cosine distance function, defined as

dp(ft, k
i
t) = | ft · kit

||ft||||kit||
|,

which represents the absolute value of the cosine of the angle between the two vectors.

This representation removes any distance component and considers only the angle

between the gaze direction and the keypoint and is conveniently bounded between 0

and 1.

A.4 Vector position distance

To compute velocity features, we need to have a vectorized notion of the distance

between two projective representations. Here, we use the rotation between the

two rays, i.e., the 3D rotation that would move one ray onto the other. We use a

quaternion representation for 3D rotations.

To compute this quaternion, we must compute the axis and the angle of rotation.

The axis of rotation is the cross product of the two vectors,

n̂t = ft−1 × ft,

and the angle between the two is

θt = arccos(ft−1 · ft).

Finally, we put them together to get the quaternion representation,

−→
dp(ft−1, ft) = cos

θt
2

+ sin
θt
2

(n̂t,1î+ n̂t,2ĵ + n̂t,3k̂).

The same calculation gives the rotation between successive keypoints as required by

the velocity feature calculation.

61



A. 3D Math

A.5 Velocity distance

To compare velocity features, we need a metric over velocities, expressed as quaternions.

One standard metric to use is

dv(p, q) = 1− (p · q)2,

which is a function of the cosine of the angle of the rotation equivalent to composing

one rotation with the inverse of the second. This metric is also, conveniently, restricted

to the range [0, 1].
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Flanagan. Eye–Hand Coordination in Object Manipulation. The Journal of
Neuroscience, 21(17):6917–6932, 2001.

[7] J Randall Flanagan, Miles C Bowman, and Roland S Johansson. Control
strategies in object manipulation tasks, 12 2006. ISSN 09594388. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0959438806001450.

[8] Michael Land, Neil Mennie, and Jennifer Rusted. The Roles of Vision and
Eye Movements in the Control of Activities of Daily Living. Perception, 28
(11):1311–1328, 11 1999. ISSN 0301-0066. doi: 10.1068/p2935. URL http:

//journals.sagepub.com/doi/10.1068/p2935.

63

http://ieeexplore.ieee.org/document/7518989/
http://linkinghub.elsevier.com/retrieve/pii/S0959438806001450
http://linkinghub.elsevier.com/retrieve/pii/S0959438806001450
http://journals.sagepub.com/doi/10.1068/p2935
http://journals.sagepub.com/doi/10.1068/p2935


Bibliography

[9] Mary M. Hayhoe, Anurag Shrivastava, Ryan Mruczek, and Jeff B. Pelz. Visual
memory and motor planning in a natural task. Journal of Vision, 3(1):6, 2
2003. ISSN 1534-7362. doi: 10.1167/3.1.6. URL http://jov.arvojournals.

org/article.aspx?doi=10.1167/3.1.6.

[10] Yan Liu, Pei Yun Hsueh, Jennifer Lai, Mirweis Sangin, Marc Antoine Nüssli, and
Pierre Dillenbourg. Who is the expert? Analyzing gaze data to predict expertise
level in collaborative applications. In Proceedings - 2009 IEEE International
Conference on Multimedia and Expo, ICME 2009, pages 898–901, 2009. ISBN
9781424442911. doi: 10.1109/ICME.2009.5202640.

[11] Uta Sailer, J. Randall Flanagan, and Roland S. Johansson. Eye–Hand Coordina-
tion during Learning of a Novel Visuomotor Task. Journal of Neuroscience, 25
(39), 2005. URL http://www.jneurosci.org/content/25/39/8833.long.

[12] Jackson Beatty. Task-evoked pupillary responses, processing load, and the
structure of processing resources. Psychological Bulletin, 91(2):276–292, 3 1982.
ISSN 00332909. doi: 10.1037/0033-2909.91.2.276.

[13] Carol A. Stanger, Carolyn Anglin, William S. Harwin, and Douglas P. Romilly.
Devices for Assisting Manipulation: A Summary of User Task Priorities.
IEEE Transactions on Rehabilitation Engineering, 2(4):256–265, 1994. ISSN
10636528. doi: 10.1109/86.340872. URL http://ieeexplore.ieee.org/

document/340872/.

[14] William S. Harwin, Tariq Rahman, and Richard A. Foulds. A Review of
Design Issues in Rehabilitation Robotics with Reference to North American
Research. IEEE Transactions on Rehabilitation Engineering, 3(1):3–13, 1995.
ISSN 10636528. doi: 10.1109/86.372887.

[15] Cheng Shiu Chung, Hongwu Wang, and Rory A. Cooper. Functional assessment
and performance evaluation for assistive robotic manipulators: Literature review,
7 2013. ISSN 10790268.
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